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Dynamics of Sine-Gordon Solitons

N. Riazi1 and A. R. Gharaati2
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After reviewing a few physical examples in which the sine-Gordon equation arises
as the governing dynamical equation, we discuss various solutions exhibiting
multisoliton dynamics. Interaction of solitons and the corresponding velocity-
dependent interaction potentials are derived and discussed. Numerical experiments
are carried out in order to study kink dynamics in an inhomogeneous medium.
Finally, we introduce two kinds of generalized sine-Gordon equations and discuss
their properties.

1. INTRODUCTION

There is a hope that some kind of nonlinear field theory will eventually

lead to an explanation of elementary particles like quarks and leptons, their

interactions, and even mass spectrum (Skyrme, 1988). The invention of

skyrmions or chiral solitons (Skyrme, 1961, 1962) is probably the most
successful step toward this grand goal. In this model, baryons are recognized

as solitons of a nonlinear chiral field of mesons. The conserved baryon

number is constructed via a topological current with quantized charges. Vari-

ous properties of nucleons (like mass, isospin, magnetic moments, etc.) are

predicted to some 20% accuracy.

As many fundamental properties of solitons in nonlinear field theories
are still far from being well understood, any analytical or numerical attempt

to highlight these properties even in simpler models could be very fruitful.

One of the best-studied equations with well-defined multisoliton solu-

tions is the sine-Gordon equation. This equation has a long history, starting

from studies about curves and surfaces in differential geometry (Eisenhart,
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1960; see also the interesting article by McLachlan, 1994). A classification

of the solutions of this equation was given by Steuerwald (1936).

BaÈ cklund transformations for generating, multisoliton solutions of non-
linear equations appeared in 1876 (BaÈ cklund, 1876). Despite its simple-

looking appearance, the sine-Gordon equation contains a variety of solutions

and a rich dynamics. Among these interesting features, particle aspects of

kink solutions and their interactions (Bowtell and Stuart, 1977; Riazi, 1993)

can be mentioned. Although the interaction between kinks is quite complex

and velocity dependent, it can be studied very easily because exact analytical
expressions exist which represent the dynamics of many kinks in interaction

(see Section 5). This situation may be compared to the complexities involved

in the few-body problem of classical mechanics. The dynamics of a system

of many interacting kinks from the viewpoint of statistical mechanics has

been studied (see, e.g., Babelon, 1993; Marchesoni, 1992). In this paper, we

first review two physical examples, long Josephson junctions and self-induced
transparency, which lead to the sine-Gordon equation (Sections 2 and 3,

respectively). In Section 4 we derive a few elementary solutions which

describe single- and double-kink configurations. Topological and dynamical

properties of kinks and interkink interactions are derived and discussed in

this section. In particular, the velocity dependence of the corresponding
potentials are studied.

BaÈ cklund transformations for generating multisoliton solutions of the

sine-Gordon equation are reviewed and applied in Section 5. Numerical

experiments are presented in Section 6. These calculations concern the dynam-

ics of kinks in an inhomogeneous background. Inhomogeneity can be intro-

duced into sine-Gordon equation at least in three ways. Two types of
inhomogenei ty are studied, and a classical mechanical description for inhomo-

geneity of each kind is presented. Inhomogeneity of the first kind is physically

related to a long Josephson junction with a spatially varying dielectric con-

stant. Finally, in Section 7, we introduce two types of modified sine-Gordon

equations with nondegenerate solitary wave masses and study their

interactions.

2. JOSEPHSON TRANSMISSION LINES

Superconducting Josephson junctions (Josephson, 1962) exhibit soliton
behavior which can be described by a sine-Gordon equation (see, e.g., Peder-

son, 1986). Solitons are quanta of magnetic flux in this case. Their production,

transmission, and storage as stable objects is quite fissible, and therefore

very important in information processing systems.
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The tunneling effect of Cooper pairs across a thin insulator between

two superconductors was predicted by Josephson (1962). If the common

macroscopic wave function of all the electron pairs is written as

C 5 ! Rei w (1)

the two superconductors will naturally have independent wave functions C 1

and C 2 with uncorrelated phases w 1 and w 2, unless the two superconductors

are set near enough to each other (say less than about 30 AÊ). The phases

then become correlated because of Cooper pair penetration through the insula-

tor barrier. The wave functions C 1 and C 2 satisfy two coupled linear
SchroÈ dinger equations (Feynman et al., 1965)

i "
- C 1

- t
5 E1 C 1 1 k C 2 (2)

i "
- C 2

- t
5 E2 C 2 1 k C 1 (3)

where E1 and E2 are the ground-state energies of electrons in the two supercon-

ductors. Here, we have assumed that the two superconductors are similar. k
is a real coupling constant which depends on the characteristics of the junction.

Obviously, k ª 0 as d ª ` , where d is the barrier thickness. When a static
potential difference V is maintained between the two superconductors, an

energy shift E1 2 E2 5 2eV is developed. We can arbitrarily choose the

reference energy at E 5 (E1 1 E2)/2 5 0, and therefore E1 5 eV and E2 5
2 eV. Equations (2) and (3) then become

i "
- C 1

- t
5 eV C 1 1 k C 2 (4)

i "
- C 2

- t
5 2 eV C 2 1 k C 1 (5)

Using the expression C 1 5 ! R1e
i w 1 and C 2 5 ! R2e

i w 2 in these equations
and separating the real and imaginary parts, we obtain

"
- R1

- t
5 2 2k ! R1R2 sin w (6)

"
- R2

- t
5 1 2k ! R1R2 sin w (7)

"
- w 1

- t
5 k ! R2/R1 cos w 2 eV (8)
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"
- w 2

- t
5 k ! R1/R2 cos w 1 eV (9)

in which w 5 w 2 2 w 1 is the phase difference between the two wave functions.
Let us define the quantities J1 [ - R1/ - t and J2 [ - R2/ - t, where R1 and

R2 represent electron pair densities which deviate only slightly from their

equilibrium values R0. We therefore have R1 . R2 . R0, and (2k / " ) ! R1 R2

. 2kR0/ " [ J0, and therefore

J . J0 sin w (10)

according to (6) or (7).

Equations (8) and (9) therefore yield

"
- w
- t

5 2eV (11)

We can write equation (11) in the form

d F
dt

5 V (12)

where F has the dimensions of magnetic flux, and is defined according to

w 5 2 p
F
F 0

(13)

in which F 0 [ h /2e is the quantum of magnetic flux. From (10) and (13)

we have

F 5
F 0

2 p
sin 2 1 J

J0

(14)

If V 5 0, then (13) implies F 5 const, which is in general nonvanishing.

This leads to a finite current density J even in the absence of an applied

voltage. The effect is known as the dc Josephson effect. If V 5 V0 5
const, F 5 V0 t 1 F 1 and (15) yields an alternating current density (ac

Josephson effect)

J 5
2 p J0

F 0

sin
2 p
F 0

(V0t 1 F 1) (15)

Therefore, an alternating current density develops with an angular frequency

v J 5
2 p V0

F 0

5
2eV0

"
(16)

This frequency is of the order of a few hundred MHz per m V voltage

difference.
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We now turn to a long Josephson junction, which consists of two rela-

tively long strips of superconducting materials separated by a very thin

dielectric of thickness d. It can be shown that a length element dx of this
device is electrically equivalent to an electrical circuit with capacitance per

unit length

C 5
K e 0a

d
(17)

in which K is the dielectric constant of the dielectric, e 0 5 8.854 3 10 2 12

C 2/N ? m 2, and a is the width of the superconducting strip. Inductance per

unit length is

L 5 m 0
2 l L 1 d

a
(18)

where m 0 5 4 p 3 10 2 7 H m 2 1, and l L is the penetration depth of the

superconductors.

From basic circuit theory, the following equations result:

- V

- x
5 2 L

- I

- t
(19)

- I

- x
5 2 C

- V

- t
2

2 p J0

F 0

sin 2 p
F
F 0

(20)

- F
- t

5 V (21)

These equations can be easily combined to yield the following sine-Gordon

equation for the phase difference:

- 2 w
- t 2 2 c 2

J
- 2 w
- x2 1 v 2

p sin w 5 0 (22)

in which

cJ 5
1

! LC
and v p 5 ! 2 p J0

F 0c
(23)

and (14) has been used. Note that cJ / v p has dimensions of length. It describes

a length scale (called the Josephson penetration length), which determines
whether a Josephson junction is ª longº or not. Equation (22) can obviously

have the kink solution (86) (see Section 4.1), in which b 5 1, a 5 v 2
p /c 2

J,

and c ª cJ. The corresponding voltage V and current I can then be easily

calculated using equations (20) and (21). The kink (antikink) describes a
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pulse of 2 p ( 2 2 p ) phase difference, corresponding to a quantum of magnetic

flux accompanied by a voltage and current pulse. The kink (antikink) is thus

called a fluxon (antifluxon) in this case.
Any spatial variation in the dielectric constant K results in a position-

dependent cJ. This in turn affects the propagation of kinks in the junction.

The situation can be approximated by the classical analog of a point particle

moving in a (velocity-dependent) external potential. We will discuss this

further in Section 6.

3. SELF-INDUCED TRANSPARENCY

3.1. Introduction

Interaction of an intense incident light with atoms can lead to interesting
nonlinear phenomena. Strong resonant interaction occurs when the photon

energy is very nearly equal to the energy difference between two atomic

levels. We will closely follow Lamb (1980) in this section.

In order to simplify the analysis, we consider a two-level atom, and

treat the electromagnetic field classically. We will observe that solitons may

occur in such interactions.
Self-induced transparency is an effect which occurs when solitons form

in the resonance interaction of radiation with atoms. If the two-level gas

atoms are irradiated with an electromagnetic pulse of suitable envelope,

despite resonant interaction, a more or less similar output pulse envelope is

received. In such a case, attenuation due to scattering is almost suppressed.
From Maxwell’ s equations, the following wave equation is easily

obtained for propagation of the electric field.

¹ 2E 2
1

c 2

- 2E

- t 2 5
4 p
c 2

- 2P

- t 2 (24)

in which P is the polarization (electric dipole density) of the medium. The

relation between P and E is in general nonlinear. This is the source of
interesting nonlinear phenomena.

The electric field is assumed to be in the form of very short duration

(picosecond) plane-polarized pulses, about 3±6 orders of magnitude longer

than the period of the wave oscillations. The electric field can be written as

E (x, t) 5 e (x, t) cos[kx 2 v t 1 w (x, t)] (25)

in which e (x, t) is the envelope and w (x, t) is the phase, both varying slowly

with time and position:
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- ln e
- x

, , k;
- ln e

- t
, , v (26)

Similar inequalities hold for w . We will find approximate equations governing

e and w , and will consider the interaction of stationary atoms with this applied

electric field.

3.2. Quantum Mechanics

We consider a two-level (a and b) atom having an energy difference
almost equal to the incident electromagnetic field frequency times the Planck

constant, Ea 2 Eb . " v 0. The wave function of the atom can be written as

a time-dependent linear combination of the two normalized wave functions

c a(r) and c b(r)

c (r, t) 5 a (t) c a(r) 1 b (t) c b(r) (27)

where * | c a,b | 2 d 3x 5 1. The wave function c (r, t) is also normalized:

# c * c d 3x 5 | a | 2 1 | b | 2 1 a*b # c *a c b d 3x 1 ab* # c *b c a d 3x

5 | a | 2 1 | b | 2 5 1 (28)

in which the orthonormality of c a and c b have been used. If n0 is the number

of atoms per unit volume, the population difference n will be

n 5 n0 # ( | a c a | )2 2 | b c b | 2) d 3x 5 n0 ( | a | 2 2 | b | 2) (29)

The wave function c satisfies the time-dependent SchroÈ dinger equation

H c 5 i "
- c
- t

(30)

The Hamiltonian consists of H0 (free atom Hamiltonian), 2 " 2/2m ¹ 2 (center-

of-mass kinetic energy), and HI 5 2 d ? E (electric dipole interaction). d is

the electric dipole moment

d 5 2 er (31)

where r is an internal position vector for the electron. d is assumed to be

parallel with E so that HI 5 2 d ? E. We obtain p via

p 5 # c * d c d 3x (32)

The atom is assumed to have no permanent electric dipole moment, so that

* c *a r c a d 3x 5 * c *b r c b d 3x 5 0. Equation (32) then implies
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p 5 p0(a*b 1 b*a) (33)

where

p0 [ 2 e # c *a r c b d 3x 5 2 e # c *b r c a d 3x (34)

Multiplying (30) by c *a and integrating over all space and using the orthogo-

nality relations for c a and c b , we obtain

d

dt
a (t) 1 i v aa(t) 5 2 iVb(t) (35)

and likewise

d

dt
b (t) 1 i v bb (t) 5 2 iVa(t) (36)

where v a 5 Ea/ " , v b 5 Eb/ " , and V 5 2 p0E (x, t)/ " .

3.3. Derivation of Sine-Gordon Equation: Stationary Atoms

For a discussion about the interaction of the incident radiation with
moving atoms, the reader is referred to Lamb (1980). Here, we assume that

all atoms are stationary. The electric field at the position of an atom at x0

is therefore

E (x0, t) 5 %(x, t) cos [kx0 2 v t 1 w (x0, t)] (37)

e and w are assumed to be very slowly varying functions of time and position,
and the second harmonic generation is neglected. Let us set

a 5 iv1 exp F 2 i v a 1 t 2
x0

c 2 G (38)

b 5 v2 exp F 2 i v b 1 t 2
x0

c 2 G (39)

We thus obtain from (35)±(39)

v1t 5
p0%

2 "
e i w v2 (40)

v2t 5 2
p0%

2 "
e 2 i w v1 (41)

The normalization condition now reads | v1 | 2 1 | v2 | 2 5 1, and the normalized

population density difference reads
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1 5 | v1 | 2 2 | v2 | 2 (42)

From (33), the polarization of an atom becomes

p 5 p0[ 2 iv*1 v2e
i v (t 2 x0/c) 1 C.C.] (43)

If we define F [ kx0 2 v t 1 w , we obtain

p 5 p0( J cos F 1 P sin F ) (44)

where the polarization envelope functions J and P are

J ( D v , x, t) 5 i (v1v *2 e 2 i w 2 v*1 v2e
i w ) (45)

P ( D v , x, t) 5 2 (v1v *2 e 2 i w 1 v *1 v2e
i w ) (46)

The total polarization per unit volume is

P (x, t) 5 n0 p(x, t) (47)

We have

- 2P

- t 2 . 2 v 2
0P 5 2 n0 v 2

0( J cos F 1 p sin F ) (48)

in which we have neglected slower time variations of P.
Putting (37) and (48) into (24), and neglecting all terms quadratic in

( - / - t) w , ( - / - x) w , ( - / - x)%, and ( - / - t)%, we find (after equating the coefficients
of sin F and cos F )

- %

- t
1 c

- %

- x
5 2 p n0 v 0 p0 P (x, t) (49)

% 1 - w
- t

1 c
- w
- x 2 5 2 p n0 v 0 p0 J (x, t) (50)

These two equations can be combined into the following complex equation:

1 -
- t

1 c
-
- x 2 (%e i w ) 5 2 p n0 v 0 p0( P 1 i J )e i w (51)

It can also be shown easily that

- P
- t

[ P t 5
p0%

"
1 1 w t J (52)

1t 5 2
p0%

"
P (53)

J t 5 2 w t P (54)
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These are special cases of Bloch’ s equations (Bloch, 1946), suitable for

stationary atoms.

Let us use the change of variable

%Ä 5
p0%

"
(55)

%Ä has the dimensions of frequency. The governing equations thus become

- %Ä

- t
1 c

- %Ä

- x
5 V 2 P (x, t) (56)

- P
- t

5 %Ä 1 (57)

- 1

- t
5 2 %Ä P (58)

in which

V 2 5
2 p n0 v 0P

2
0

"
(59)

Note that if J (x, 0) 5 J t(x, 0) 5 0, then J remains constant and we have

w t 5 0. Equations (57) and (58) immediately yield

12 1 P 2 5 1 (60)

which enables us to write

P 5 6 sin s (61)

1 5 6 cos s (62)

From (57) or (58) we obtain

%Ä 5
- s
- t

(63)

We can therefore write s (x, t) 5 * t
2 ` dt8 %Ä (x, t8). Obviously s (x, 2 ` ) 5 0,

which yields P (t 5 2 ` ) 5 0 and 1(t 5 2 ` ) 5 6 1. 1 5 1 1 corresponds

to the initially inverted atomic population, while 1 5 2 1 corresponds to all

atoms being in the lower level.

Let us use the coordinate transformations
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j 5
V x

c
(64)

t 5 V 1 t 2
x

c 2 (65)

This transformation implies

-
- t

5
- j
- t

-
- j

1
- t
- t

-
- t

5 V
-
- t

(66)

-
- x

5
- j
- x

-
- j

1
- l
- x

-
- r

5
V
c 1 -

- j
2

-
- t 2 (67)

(56) then takes the form

- 2 s
- j - r

5 6 sin s (68)

which is one of the common forms of the sine-Gordon equation (see Section 5).

3.4. Physical Interpretation

The single-soliton (kink, antikink) solution to this equation is (see the

next section)

s ( j , t ) 5 4 tan 2 1[exp( a t 6 j / a )] (69)

In terms of the dimensionless electric field envelope

u 5
%Ä

V
(70)

we have

- u

- e
5 6 sin s (71)

and

#
1 `

2 `

d t u ( j , t ) 5 #
1 `

2 `

%Ä

V
d t 5 #

1 `

2 `

1

V
- s
- t

d t 5 #
1 `

2 `

- s
- t

d t 5 2 p (72)

for the kink solution. If the area under the pulse (kink) is slightly greater

than 2 p , we have

- u

- j
5 6 sin(2 p 1 e ) . 6 e (73)

For the plus sign, - u / - j . 0, which forces %Ä to increase further. For the
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minus sign, - u / - j , 0 for e . 0 and - u / - j . 0 for e , 0, which shows

that the area converges toward 2 p . We can conclude that the pulse is stable

only in the latter case.
We can interpret the occurrence of the soliton behavior in the following

way. The leading part of % causes the atoms to be excited and the population

to be inverted. The trailing part of the pulse causes stimulated emission and

the attenuated pulse gets amplified and is thus recovered. The process occurs

only if the pulse duration is short enough, during which atoms do not undergo

collisions and thus their coherency with the incident light is not lost. The
light intensity should also be strong enough so that the majority of the atoms

are involved in the process, otherwise attenuation will result. From (63), (69),

and (70) we have

%Ä 5
p0

"
% 5 V

- s
- t

5
2

t p

sech F t 2 x /v

t p G (74)

where t p 5 ( a V ) 2 1 and

1

v
5

1

c 1 1 1
1

a 82 2 (75)

The pulse velocity can be a few orders of magnitude smaller than the phase
velocity of light waves in the medium, depending on the value of a .

For further information about the numerical and experimental results,

the reader can refer to Patel and Slusher (1968), McCall and Hahn (1969),

and Gibbs and Slusher (1972).

4. SOLITONS OF SINE-GORDON EQUATION

4.1. Separation of Variables

The standard form of the sine-Gordon equation is

- 2 w
- x 2 2

1

c 2

- 2 w
- t 2 5 a sin b w (76)

in which a and b are constants assumed to have the same sign. By using the

change of variables

u 5 ! abx; v 5 ! abct; s 5 b w (77)

equation (76) becomes

s uu 2 s vv 5 sin s (78)

Multisoliton solutions of this equation can be obtained systematically by
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applying BaÈ cklund transformations (Section 5). In this section, we will obtain

a restricted class of single- and double-kink solutions via an elementary

separation-of-variable method (Lamb, 1980). Using the ansatz

s (u, v) 5 4 tan2 1 U (u)

V (v)
(79)

and the trigonometric identity

sin s 5
4 tan( s /4)[1 2 tan2( s /4)]

[1 1 tan2( s /4)]2 (80)

we obtain

(U 2 1 V 2) 1 U 9

U
1

V 9

V 2 2 2(U 8)2 2 2(V 8)2 5 V 2 2 U 2 (81)

in which the primes indicate differentiation of the functions U and V with

respect to their arguments. By differentiating (81) once with respect to u and

once with respect to v, we can separate this equation into

1

UU 8 1 U 9

U 2 8 5 2
1

VV 8 1 V 9

V 2 8 5 2 4 k 2 (82)

These equations can now be easily twice integrated to yield

(U 8)2 5 2 k 2U 4 1 m 2U 2 1 n 2 (83)

(V 8)2 5 k 2V 4 1 (m 2 2 1)V 2 2 n 2 (84)

in which m and n are integration constants. Solutions of these equations

involve, in general, elliptic functions (Steuerwald, 1936).

There are a few special cases which can yield simple, yet important

soliton solutions.

4.2. Single-Soliton (Kink) Solutions

Let k 5 0, m . 1, and n 5 0 in (83) and (84). These equations can

immediately be integrated to yield U (u) 5 g 1 exp( 6 mu) and V(v) 5
g 2 exp[ 6 (m 2 2 1)1/2 v], in which g 1 and g 2 are constants of integration.

Therefore

s (u, v) 5 4 tan 2 1 G exp[ 6 mu 6 (m 2 2 1)1/2 v] (85)

in which G is a constant. Note that all sign combinations are possible. Using

(77) and the ( 1 , 2 ) choice of signs, we obtain



1094 Riazi and Gharaati

w (x, t) 5
4

b
tan 2 1( G exp[ ! ab g (v0)(x 2 v0t)]) (86)

This solution describes a soliton (kink) moving with a uniform velocity

v0[ g (v0) 5 (1 2 v 2
o /c 2) 2 1/2]. Note that b w ª O(2 p ) as x ª 2 ` ( 1 ` ). The

field jumps from one of its degenerate vacua to another over a certain region

of space.

From a field-theoretic point of view, the sine-Gordon equation can be
derived from the following least action principle:

d # + d 2x 5 0 where + 5
1

2
- m w - m w 2 V ( w ) (87)

V ( w ) 5
a

b
(1 2 cos b w ) (88)

The corresponding energy-momentum tensor is

T m n 5 - m w - n w 2 g m n + (89)

which yields the following Hamiltonian density:

* 5 T 00 5
1

2c 2 1 - w
- t 2

2

1
1

2 1 - w
- x 2

2

1 V ( w ) (90)

In these equations, g m n 5 diag( 1 1, 2 1) is the Minkowski metric tensor in

1 1 1 dimensions, and x m 5 (ct, x). The following topological current can

be defined (Rajaraman, 1982):

J m 5
b

2 p
e m n - n w (91)

This current is conserved ( - m J m 5 0) and the corresponding charge is
quantized:

Q 5 # J0 dx 5
b

2 p
( w ( 1 ` ) 2 w ( 2 ` )) 5 n, n P Z (92)

Because the field w assumes its vacuum values w n 5 2n p b at either infinity.

The topological charge corresponding to kinks (antikinks) is 1 1 ( 2 1),

respectively.

The corresponding total energy and momentum of the kink are

E 5 # *dx 5 g mc2 (93)

P 5 # T 01dx 5 g mv (94)

where the kink rest mass is
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m [
1

c 2 E (v 5 0) 5 8
a 1/2

c 2b 3/2 (95)

Einstein’ s equation E 2 5 p 2c 2 1 m 2c 4 is obviously satisfied. In this respect

and many other respects to be discussed, the kink behaves like a classical

relativistic point particle, although it is an extended object and has wave

nature inherent in it.

4.3. Double-Kink Solutions

Let k 5 0, m . 1, and n Þ 0. In this case,

U (u) 5 6
n

m
sinh(mu 1 c1)

V (v) 5
n

! m 2 2 1
cosh ( ! m 2 2 1v 1 c2)

Adopting a suitable origin for u and v coordinates, the corresponding solu-

tion becomes

w (x, t) 5 6
4

b
tan 2 1 F ! 1 2 1/m 2 sinh( ! abmx)

cosh( ! ab(m 2 2 1)ct) G (96)

The topological charge for this solution is

Q 5
b

2 p
( w ( 1 ` ) 2 w ( 2 ` )) 5

b

2 p 1 6 2 p
b

6
2 p
b 2 5 6 2 (97)

which clearly explains the double-kink nomenclature. At t ª 2 ` and x ª 1 ` ,

w (x, t) . 6
4

b
tan 2 1[ ! 1 2 1/m 2 exp ( ! abm (x 1 ! 1 2 1 /m 2ct))]

which describes an antikink (kink) moving in the 2 x direction with an initial
velocity vo 5 ! 1 2 1/m 2c. There is also a kink (antikink) at x ª 2 ` moving

in the 1 x direction at the same initial velocity. These two kinks move toward

each other, collide at t 5 0, and then recede from each other for t . 0 (see

Fig. 1). We introduce an intuitive definition for the kink’ s position, by twice

differentiating (96) with respect to x, and requiring w xx 5 0. For the present

case this yields

xk(t) 5 6
1

! ab g
cosh 2 1 ! 1

b 2 cosh2 ( ! ab g b ct) 2 1 (98)

In this equation b 5 vo/c and g 5 (1 2 b 2) 2 1/2.
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Fig. 1. k±k collision.

It can be noted that xk ª 6 v0t as t ª 6 ` . This corresponds to long
before and long after collision at t 5 0, i.e., when there is no interaction and

the kinks move with uniform velocities.

A velocity-dependent force can be extracted from (98) and its first and

second derivatives (xÇ k [ vk and xÈ k [ ak):

vk(t)

v0

5
1

b 2

sinh(2 ! ab g v0t)

sinh( ! abxk(t))
(99)

ak(t) 5 2 ! ab g v0vk(t)

3 [coth(2 ! ab g v0t) 2
vk(t)

v0

coth(2 ! ab g xk(t)) G (100)

Equations (98) and (99) can, at least numerically, yield t (xk , vk) and v0(xk , vk).

Equation (100) will then express a velocity-dependent acceleration as a func-

tion of the interkink separation 2xk and the kink velocity vk. Figure 2 shows

this acceleration as a function of xk for several values of the initial velocity v0.
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Fig. 2. Kink acceleration as a function of kink position for various initial velocities (k 1
k ª k 1 k).

4.4 Kink± Antikink Solution

This solution corresponds to k Þ 0 and n 5 0 in (83) and (84). For
m 2 . 1, we have

w (x, t) 5 2
4

b
tan 2 1 F m

! m 2 2 1

sinh( ! m 2 2 1)abct)

cosh(m ! abx) G (101)

which describes the collision of an unbound kink±antikink pair moving ini-

tially with velocities v0 5 c (1 2 1/m 2)1/2.

If m 5 1, the following solution is obtained:

w (x, t) 5 2
4

b
tan 2 1[ ! abct sech ! abx] (102)

Note that the total charge is zero for both (101) and (102). Equation (102)

describes the limiting case of the kink±antikink relative velocity becoming
zero at infinity. In this case

xk(t) 5 6
1

! ab
sinh 2 1 ! 1 1 abc2t 2 (103)

The two solitons have a closest separation

dmin 5 2xk(t 5 0) 5
2 ln(1 1 ! 2)

! ab
(104)

The kink velocity (vk 5 xÇ m) is obtained from (103)
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vk

c
5

! abct

! (1 1 abc2t 2)(2 1 abc2t 2)
(105)

which is zero at t 5 0 and t ª 6 ` . It is interesting to note that although the

pair never get closer than dmin, there is a charge transfer at this distance, and

for a macroscopic observer it looks as if the two solitons are penetrating

each other.
The kink acceleration is obtained as

ak(t) 5
vk

t F 1 2
v 2

k

c 2 (6 1 4abc2t 2) G (106)

which is plotted as a function of xk in Fig. 3. It can be seen that the acceleration
changes sign at

x1 5
1

! ab
sinh 2 1( ! 1 1 a 2) (107)

where a 5 [( ! 33 2 3)/2]1/2.

The form of potential is interesting and resembles physical potentials
like the nuclear and van der Waals potentials.

4.5. Breather Solution

This solution corresponds to k Þ 0, n 5 0, and m 2 , 1:

w (x, t) 5 6
4

b
tan 2 1 F m

! 1 2 m 2

sin( ! (1 2 m 2)abct)

cosh(m ! abx) G (108)

It describes a kink±antikink bound state (see Fig. 4). It can be shown that

in this case

Fig. 3. Kink acceleration as a function of kink position for the critically bound k±kÄ pair.
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Fig. 4. Breather solution.

xk(t) 5 6
1

m ! ab
sinh 2 1 ! 1 1

m 2

1 2 m 2 sin2 ! 1 2 m 2)abct (109)

which clearly shows the periodic nature of the solution with a period

v B 5 c ! (1 2 m 2)ab (110)

The maximum distance between the pair is

xmax 5
2

m ! ab
sinh 2 1 1

! 1 2 m 2
(111)

It is seen that xmax ª ` and w B ª 0 as m ª 1 2 . The kink velocity can be

expressed as

vk(t)

c
5

m

! 1 2 m 2

sin 2 ! (1 2 m 2)abct

sinh 2m ! abxk

(112)

Note that the case k 5 0, m , 1, and n Þ 0 is essentially equivalent to the

breather solution, since a redefinition n82 5 2 n 2 gives a solution

w (x, t) 5 6
4

b
tan2 1 F ! 1 2 m 2

m

cosh m ! abx

sin ! (1 2 m 2)abct G (113)

which is nothing but a 2 p shift in the w of the breather solution (108).
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The corresponding acceleration is calculated numerically and plotted in

Fig. 5 for various values of the parameter m. The form of these curves

suggests that the notion of a classical binding ª potentialº between the kink
and antikink is plausible only in the m ª 1 limit. In this limit, the form of

potential approaches that of Fig. 3.

5. SOLUTIONS GENERATED BY BAÈ CKLUND
TRANSFORMATIONS

A description of the BaÈ cklund transformation and its use to obtain
multisoliton solutions of nonlinear equations can be found in Lamb (1980).

Here we present a short discussion of the transformations, restricting

ourselves to the sine-Gordon equation. The basic idea behind the BaÈ cklund

transformations is the following. Although we are concerned with nonlinear

equations in which superposition of solutions is no longer valid as a

solution, multisoliton solutions could be generated by algebraic means,
which in some respect resembles the superposition procedure used for

linear equations.

The sine-Gordon equation (78) can be written in the form

s e t 5 sin s (114)

using the change of variables

j 5 1±2 (u 2 v), t 5 1±2 (u 1 v) (115)

It can be shown that (114) is invariant under the following transformations:

Fig. 5. The k±kÄ acceleration as a function of xk for various values of m.
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s 8j 5 s j 2 2 b sin 1 s s 1

2 2 (116)

s 8t 5 2 s t 1
2

b
sin 1 s 2 s 1

2 2 (117)

s 8 5 s ; t 8 5 t (118)

where b is a real constant called the BaÈ cklund parameter. Equivalence of

(116) and (117) with the sine-Gordon equation (114) is readily confirmed

via the integrability condition

2 s j t 5 b ( s t 1 s 8t ) cos 1 s 1 s 8

2 2 1
1

b
( s j 2 s 8j ) cos 1 s 2 s 1

2 2 (119)

Using equations (116) and (117), this yields (114).

The inverse BaÈ cklund transformations

s j 5 s 8j 1 2 b sin 1 s 1 s 8

2 2 [ B1( s 8, s 8j ; s ) (120)

s t 5 2 s 8t 1
2

b
sin 1 s 2 s 8

2 2 [ B2( s 8, s 8t ; s ) (121)

yield

s 8j t 5 sin s 8 (122)

which confirms the invariance of the sine-Gordon equation under BaÈ cklund

transformations. Thus, if one has a first solution s for (114), another solution

s 8 for (122) can be found by integrating (116) and (117).

As an example, s 5 0, which is a trivial solution, yields

s 8e 5 2 2 b sin
s 8

2
(123)

s 8t 5 2
2

b
sin

s 8

2
(124)

These differential equations immediately yield

s 8( j , t ) 5 4 tan 2 1 e 2 b j 2 b 2 1 t 1 a (125)

The following theorem (Rogers, 1990) enables us to find multisoliton solu-

tions without executing further integrations:
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Permutability Theorem. If s n 2 1 is solution of (114), and s 8n and s 9n are

two solutions generated from s n 2 1 according to (116) and (117) with parame-

ters b 8 and b 9, respectively, there exists a solution s n 1 1 such that

s n 1 1 5 4 tan 2 1 F b 8 1 b 9

b 8 2 b 9
tan 1 s 8n 2 s 9n

4 2 G 1 s n 2 1 (126)

The algorithm for generating s n 1 1 is shown schematically in Fig. 6. This is
called a Bianchi diagram.

Note that the BaÈ cklund parameters b 1 and b 2 are interchanged in this

diagram.

Bianchi diagrams for the third- and fourth-generation solutions are shown

in Fig 7. and 8, respectively.

Starting from the trivial solution s o 5 0 and two first-generation solutions

s (1)
1 5 4 tan2 1 exp( b 1 z 1 b 2 1

1 t 1 a 1)

a (2)
1 5 4 tan 2 1 exp( b 2 z 1 b 2 1

2 t 1 a 2)

equation (126) yields the second-generation (double-kink) solution

s 2 5 4 tan 2 1 F b 1 1 b 2

b 1 2 b 2

tan 1 s
(1)
1 2 s (2)

1

4 2 G (127)

and the third-generation (three-kink) solution

s 3 5 4 tan 2 1 F b 1 1 b 3

b 1 2 b 3

tan 1 s
(1)
2 2 s (2)

2

4 2 G 1 s (2)
1 (128)

where

Fig. 6. Bianchi diagram for the permutability theorem.
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Fig. 7. Third-generat ion Bianchi diagram.

s (1)
2 5 4 tan 2 1 F b 1 1 b 2

b 1 2 b 2

tan 1 s
(1)
1 2 s (2)

1

4 2 G (129)

s (2)
2 5 4 tan 2 1 F b 2 1 b 3

b 2 2 b 3

tan 1 s
(2)
1 2 s (3)

1

4 2 G (130)

and

s (i)
1 5 4 tan 2 1 e b i j 1 b 2 1

i t 1 a i; i 5 1, 2, 3 (131)

It can be easily shown that the topological charge of the solution (127) is 0,

6 2, corresponding to kkÄ , kk, and kÄ kÄ ; combinations. The topological charge

of (128) is 6 1, 6 3, corresponding to kkk, kÄ kÄ kÄ , kkkÄ , and kÄ kÄ k combinations.
Note that although (127) represents two kinks moving always in the

positive j direction, we can always find boosts which make kinks move in

either direction.

In order to confirm the conformity of the two-kink solution (127) with

the previously derived solutions of Section 4, we apply the following
Lorentz transformations:

x 5 g (x8 1 ut8); t 5 g (t8 1 ux8/c 2) (132)

We therefore have
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Fig. 8. Fourth-generat ion Bianchi diagram.

w (i)
1 5

4

b
tan 2 1 exp F ! ab g [( b i 1 b 2 1

i u/c)x8

1 ( b 1u 1 b 2 1
i c)t8] G ; i 5 1, 2 (133)

We need the two kinks to have equal and opposite velocities in the new
frame (x8, t8). Therefore

b 1u 1 b 2 1
1 c

b 1 1 b 2 1
1 u/c

5 2
b 2u 1 b 2 1

2 c

b 2 1 b 2 1
2 u/c

(134)

Now, choosing the parameters b 1 and b 2 according to

m 5 g ( b 1 1 b 2 1
1 u/c) 5 2 g ( b 2 1 b 2 1

2 u/c) (135)

and doing a little algebra reveals that (127) yields (96).
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6. KINK DYNAMICS IN AN INHOMOGENEOUS MEDIUM

In this section we examine the dynamics of sine-Gordon kinks in an

inhomogeneous medium. The time-independent inhomogenei ty can be intro-

duced into the sine-Gordon equation in different ways. We will mention three

ways, although only two cases will be worked out in detail.
The first kind of inhomogeneity is introduced via a varying refractive

index’ :

- 2 w
- x 2 2

n 2(x)

c 2

- 2 w
- t 2 5 a sin b w (136)

This looks like a variation in the optical refractive index of a transparent

medium in the context of electromagnetic wave propagation. A physical

fulfillment of equation (136) can be accomplished by an inhomogeneous

Josephson transmission line.

Consider equation (22). If the dielectric constant K is to vary with x,
we can write

cJ 5
cÄ

n (x)
(137)

where

cÄ 5
1

! LC0

(138)

and

n (x) 5 ! K (x)

K0

(139)

In equation (138), C0 is a constant reference capacitance corresponding to

the dielectric constant K0.

The inhomogeneity of the second kind can be introduced via spatially

varying a and b:

- 2 w
- x 2 2

1

c 2

- 2 w
- t 2 5 a(x) sin b(x) w (140)

This kind of inhomogeneity will be discussed in detail in Section 6.2.

The third kind of inhomogenei ty is introduced via an external field x (x):

t 2 w
- x 2 2

1

c 2

- 2 w
- t 2 5 a sin b w 1 x (x) (141)

This case is discussed in Reinisch and Fernandez (1981) and Kaup (1984).

It seems less interesting to us, and therefore we shall not consider it any further.
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Several interesting questions arise when the kink dynamics in an inhomo-

geneous medium is concerned. If the kink is considered as a classical particle

interacting with a background potential, what would be the characteristics
of such a potential in relation with n (x), a (x), b (x), and the kink velocity

vk? In what circumstances does the particle aspect fail to be adequate? What

are the interesting features of the wave aspect? etc.

Although interesting analytical approximations can be worked out which

explain some of the basic properties of the kink dynamics, a more elaborate

picture of what is going on can only be achieved via numerical integration.
The numerical procedure we have followed in order to carry out the

integration is as follows. The x axis in the relevant range is divided into N
divisions of length e . The time axis is also divided into intervals of duration

d . Using the standard finite-difference expressions for spatial and temporal

derivatives, we can show that

s i,j 1 1 5
d 2( s i 1 1, j 2 2 s i,j 1 s i 2 1, j 2 e 2ai sin bi s i,j)

e 2n 2
i

1 2 s i,j 2 s i,j 2 1 (142)

where s i,j [ s (u 5 i e , v 5 j d ), ai 5 a (u 5 i e )/a0, bi 5 b (u 5 i e )/b0, and

ni 5 n (u 5 i e ). As before, s 5 b0 w , u 5 ! a0b0x, and v 5 ! a0b0ct, a0 and

b0 being some reference values for a and b, respectively.

Equation (142) enables us to calculate the field configuration in a next

time step, using its configuration at two preceding time steps. Starting from
an initial configuration at time steps j 5 1 and j 5 2, equation (142) can be

successively applied to calculate the kink dynamics up to any arbitrary later

time. One, however, should be careful about the numerical instabilities which

may arise. See, for example, Chapter 17 of Press et al. (1986), and in particular

the corresponding sections on von Neumann stability analysis and the Lax

method.

6.1. Inhomogeneity of the First Kind

Kink dynamics in a medium with n (x) can be approximated in terms

of a classical particle moving against a velocity-dependent potential. Consider

a kink with initial velocity v0 incident on a `potential barrier ’

n (x) 5 H 1.0 x , x1

n1 x . 1
(143)

Numerical results indicate that low-velocity kinks do penetrate the barrier.

There exists a threshold velocity, above which kinks cannot penetrate the

barrier. This threshold velocity depends, of course, on the potential height

n1. Ultrarelativistic kinks cause kink±antikink pair production together with
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low-amplitude excitations. Examples are shown in Fig. 9 for n1 5 1.02 and

uk 5 0.01, 0.1, and 0.97.

The velocity dependence of the force acting on the kink is evident also
in Fig. 10, where a kink moves across a linearly increasing refractive index

n (x) 5 H 1.0 x , x1

1 1 a (x 2 x1) x $ x1
(144)

The kink is observed to penetrate to a certain depth, where it is almost frozen.

It will never come back to recover its `potential energy.’

A simple analytical description can be presented in the limit of slowly

varying refractive index and over short periods of time. Consider the coordi-

nate transformations.

xÄ 5 x (145)

tÄ 5
t

n (x)
(146)

under which the sine-Gordon equation becomes

- 2 w
- xÄ 2

2
1

c 2

- 2 w
- tÄ2

1 tÄ
n8

n F 2 2
- 2

- tÄ - xÄ
1

n8

n

-
- tÄ

1 tÄ
- 2

- tÄ2 G w 5 a sin b w (147)

in which n8 5 dn/dx. For the kink solution, - 2 w / - x 2 5 a.b.O (1) and 1/c 2

- 2 w / - t 2 5 a.b.O (v 2
k /c 2). In the limit | tÄn8/n | , , vk/c

2, we can ignore the

bracket terms in (147), and obtain the sine-Gordon equation in the (xÄ , tÄ)
coordinates. The kink solution in the new coordinates reads

w (xÄ , tÄ) 5 w (x, t) 5 4 tan 2 1 exp[ ! ab g (v0)(xÄ 2 v0tÄ)] (148)

in which v0 is constant. Note that in the (x, t) coordinates xÄ 2 v0tÄ 5 x 2
[v0/n (x)]t, which corresponds to a varying kink velocity. The instantaneous

position of the kink is obtained by solving the equation

n (xk)xk 5 v0t (149)

for xk(t). The instantaneous acceleration of the kink is

ak(xk , vk) 5 2
2n8(xk) 1 n9(xk)xk

(n (xk) 1 n8(xk)xk)
2 v0vk (150)

The potential acting on the kink as a result of varying refractive index of

the medium is clearly velocity dependent. The velocity dependence is linear in

this approximation. This is in agreement with the previous numerical results.
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Fig. 9. Kink colliding with a potential step. (a) For vk 5 0.01 kink crosses over; (b) for

vk 5 0.1 kink is reflected.
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Fig. 10. Kink moving across a linearly increasing refractive index.

6.2. Inhomogeneity of the Second Kind

This kind of inhomogeneity seems to be more interesting and viable to
analytical description.

Equation (140) with a and b constant possesses kink solutions having

rest energy

Ek(0) 5 8
a 1/2

b3/2 (151)

and total moving energy

Ek(vk) 5 g (vk)Ek(0) (152)

Let us define a reference rest energy E0 according to

E0 5 8
a 1/2

0

b 3/2
0

(153)

If the x coordinate is now divided into segments with various (but constant)
a’ s and b’ s, (152) can be written in the following form:

Ek(vk) 5 E0 1 T 1 U (154)

where
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U 5 Ek(0) 2 E0 (155)

That is, we have naturally decomposed the total kink energy in a locally

homogeneous medium into three parts: rest energy E0, kinetic energy T, and
potential energy U. From (151), (153), and (155), we have

U 5 8
a 1/2

b3/2

2 8
a 1/2

.0

b 3/2
0

5 E0 F ! a

a0 1 b0

b 2
3/2

2 1 G (156)

Let us now tentatively generalize this definition to the case a 5 a (x) and

b 5 b (x). The kink dynamics can then be described through the conventional
prescription of classical relativistic dynamics, as long as the scale over which
the potential varies appreciably is large compared with the size of the kink.
The force field turns out to be nearly conservative, and common energy-

conservation arguments for a massive particle approximately hold.

Figure 11 shows the example of a kink moving against a potential slope.

The kink returns to its initial position and velocity after a finite time.
As a classical particle, the kink bypasses a potential barrier as long as

its kinetic energy is more than the potential height (see Fig. 12). However,

it is interesting to note that it does penetrate a potential barrier with U . T
if the barrier is thin enough. Figure 13 shows this classical `tunneling effect.’

This effect is a result of the wave aspect of the kink and does not contradict

Fig. 11. Kink moving across a potential slope (second kind).
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Fig. 12. Kink passing over a potential step for T . U (a), and being reflected for T , U (b).
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Fig. 13. (a) Classical tunneling of a kink through a thin barrier with T , U. (b) For a

wider barrier (and the same kinetic energy) there is no tunneling.
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the particle aspect just described, because in this case the slowly varying

assumption for the potential breaks down.

6.3. The Mass of Potential Energy

The analytical prescription put forward in Section 6.2 raises an interesting
question about the mass of potential energy. This fundamental problem was

first discussed in detail by Brillouin (1965a, 1965b), who wrote:

Every scientist writes E 5 Mc2, but almost everybody forgets to use this relation

for potential energy. The founders of relativity seemed to ignore the question,

although they specified that (this) relation must apply to all kinds of energy,

mechanical, chemical, etc. When it comes to mechanical problems, the formulas

usually written contain the mass of kinetic energy, but they keep silent about the

mass of potential energy.

The problem of potential energy mass can be easily clarified in the context

of kink dynamics: Equation (155) can be written in the form

Ek(vk 5 0, a Þ a0, b Þ b0) 5 E0(vk 5 0, a 5 a0, b 5 b0) 1 U 5 mkc
2

(157)

where mk 5 8a 1/2 /c 2b 3/2. What we call `potential energy’ of the kink is
nothing but the mass increase (or decrease) as a result of interaction with

the medium against which the kink moves. The inertial mass of the kink,

therefore, certainly depends on the background values of a and b and the

potential energy contributes to its rest mass.

7. GENERALIZED SINE-GORDON EQUATIONS

Single solitons of the sine-Gordon equation are degenerate and have

equivalent masses (Rajaraman, 1982). We can change the Lagrangian density
of the sine-Gordon equation in such a way that this degeneracy will be

removed. The Lagrangian density can be generalized at least in two ways.

First we multiply the Lagrangian density by a factor f ( w ) in such a way as

to obtain the desired results. In the second method, we change the potential

term (88) so that the parameter a will be a piecewise-constant function of

w . By considering (95), it is obvious that the rest mass of the solitary wave
will be changed. We now consider these two methods in more detail.

7.1. Multiplication by a Scalar Function

Let us multiply the Lagrangian density of the sine-Gordon equation by

[1±2 (r 1 2)]2 c r:
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+( c , - m c ) 5 1 r 1 2

2 2
2

c r F 1

2
- m c - m c 2 (1 2 cos c ) G (158)

where r is a real number. This Lagrangian density approaches that of the

sine-Gordon equation in the limit r ª 0. By changing the variables c and r as

s 5
2

r 1 2
and c 5 f s (159)

we find that equation (158) becomes

+( f , - m f ) 5
1

2
- m f - m f 2

1 2 cos( f )s

s 2 f 2s 2 2 (160)

By using the Euler±Lagrange equation in the static case ( - f / - t 5 0) we obtain

- 2 f
- x 2 5

- V ( f )

- f
(161)

where

V ( f ) 5
1 2 cos( f )s

s 2 f 2s2 2 5
2 sin2( f s/2)

s 2 f 2s 2 2 (162)

Multiplying both sides of (161) by - f / - x and integrating, we get

x 2 x0 5 # d f

! 2V ( f )
5 ln 1 tan 1 f

s

4 2 2 (163)

The exact solution of this static case is thus obtained:

f (x) 5 [4 tan 2 1e (x 2 x0)]1/s (164)

In order to obtain the time-dependent moving solution, it is enough to express

f (x) in a x8 system which moves with the uniform velocity v with respect

to the x system:

f 8(x8, t8) 5 f (x, t) 5 [4 tan 2 1e (x8 2 x8
0

)
]1/s (165)

If we use

x8 5 g (x 2 vt), t8 5 g (t 2 vx), g 5
1

! 1 2 v 2
(166)

we obtain

f (x, t) 5 [4 tan 2 1e g (x 2 vt 2 x0)]1/s (167)

The energy-momentum tensor is given by
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T m n 5 - m f - n f 2 h m n + (168)

The (o, o) component of energy-momentum tensor yields the Hamiltonian

density;

T o,o 5 * 5
1

2 1 - f
- t 2

2

1
1

2 1 - f
- x 2

2

1 V ( f ) (169)

The total energy for the static (164) and dynamic (167) solutions can be
obtained accordingly. For the time being, we do the calculation only for the

static case:

E0(s, n) 5 #
`

2 `

* dx 5 #
[2 p (n 1 1)]1/s

(2 p n)1/s
! 2V ( f ) d f (170)

where E0(s, n) is the rest energy of the solitary wave between two vacuum

states n and n 1 1. By considering (162), equation (170) gives

E0(s, n) 5
22/s

s 2 #
p (n 1 1)

p n

| u (2/s) 2 s sin u | du (171)

where u 5 f s/2. It is obvious that the above equation yields different rest
masses for different n’ s and s’ s. For specific values of s, E0(s, n) can be

obtained in terms of elementary functions. For example, if s 5 1, then

E0(1, n) 5 8, which is the degenerate rest mass of the sine-Gordon soliton,

independently of n (see Section 4.2). For s 5 1/2,

E0(1/2, n) 5 64 | [ p 2(2n 2 1 2n 1 1) 2 4] | (172)

This obviously depends on n, and by increasing n, E0(1/2, n) increases, too.

For s 5 2/3 equation (171) becomes

E0(2/3, n) 5 18 p (2n 1 1) (173)

For s 5 2 the rest mass becomes

E0(2, n) 5 o
`

m 5 0

( 2 1)m p 2m 1 1

(2m 1 1)!(2m 1 1)
[(n 1 1)2m 1 1 2 n 2m 1 1] (174)

which decreases by increasing n.

It can be observed that for all values of s (exept s 5 1), the rest mass

E0(s, n) depends on n.
Using the fact that the Lagrangian density is a scalar (invariant under

Lorentz trasformations), it can be shown that the total energy of the moving

solitary waves satisfies the Einstein relations E (s, n) 5 g E0(s, n) and E 2(s, n)

5 P 2(s, n) 1 E 2
0(s, n).
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Numerical calculations show that the solutions (167) are stable, while

a system of a kink and an antikink does not survive collisions, except for s
5 1, in which case the solitary waves are solitons.

7.2. Stepwise Constant Parameters

In the second approach, we define the potential function V ( f ) as

V ( f ) 5 a (1 2 cos f ) (175)

in which

a 5 H a1 f , 0

a2 f $ 0
(176)

where a1 and a2 are constants. Using this extension, single-soliton solutions

of the dynamical equation (78) are essentially unchanged. However, by con-
sidering equation (95), it can be observed that the solitons belonging to the

f $ 0 and f , 0 sectors have different masses.

Numerical calculations show that the interaction between two solitons

with velocities v1 and v2 and masses m1 and m2 show interesting phenomena,

which are summarized as follows:

I. A soliton±antisoliton pair undergoing collision can exchange momen-
tum and energy. This is in contrast to the usual interaction of solitons, which

can at most lead to a phase shift (Fig. 14).

Fig. 14. Momentum transfer between two kinks belonging to different sectors in the

modified sine-Gordon (MSG) equation.
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Fig. 15. A heavy kink±antikink pair annihilating to an almost massless pair in the

MSG system.

II. A heavy soliton±antisoliton pair colliding at low energies can annihi-

late and produce a light-weight soliton±antisoliton pair moving at higher
velocities (Fig. 15).

III. A low-mass soliton±antisoliton pair colliding at a high enough center-

of-mass energy can in a short interval of time produce a bound system of

heavy soliton±antisoliton pair and then annihilate to the first pair (Fig. 16).

7.3. Soliton Confinement

Let us add a constant and a harmonic term to the self-interaction potential

of the sine-Gordon equation:

V ( f ) 5 1 1 e 2 cos f 2 e cos(2 f ) (177)

where e is a constant. It is obvious that this potential has false vacuua at
f 5 (2n 1 1) p if e . 0.25.

Fig. 16. A low-mass kink±antikink pair produces a transient heavy pair, which subsequently

annihilates into the original pair (MSG system).
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The dynamical equation corresponding to this potential reads

N f 5 sin f 1 2 e sin(2 f ) (178)

It can be shown that this equation has the exact single-kink (antikink) solution

f (x, t) 5 2 cos 2 1 F 6
sinh ! 4 e 1 1 g (x 2 vt)

! 4 e 1 cosh2 g ! 4 e 1 1 g (x 2 vt) G (179)

in which the 1 ( 2 ) sign is for antikinks (kinks), v is the kink velocity, and

g 5 (1 2 v 2) 2 1/2 as before. The corresponding energy density is plotted for

v 5 0 and various values of e in Fig. 17. The solution (179) becomes the

ordinary soliton of the sine-Gordon equation in the limit e ª 0. As the value
of e grows, the kink splits into two parts (let us call them subkinks). Each

of these subkinks has half-integer topological charges and is confined within

the kink. A strong force confines them inside the kink, and if energy is

supplied to them, they will oscillate back and forth within the kink (Fig. 18).

Subkinks do not exist independently.

The strong confining force between the two subkinks can be attributed
to the stress tensor of the false vacuum which develops between them as

they move apart. If f . (2n 1 1) p . const, then T m n . 2g m n , which

resembles that of a perfect fluid with p 5 2 r 5 2 2.

The collision between two kinks of this type is shown in Fig. 19, which

is rather similar to the collision between two kinks of the conventional sine-

Gordon equation. A kink±antikink collision, however, leads to the transfer
of some translational kinetic energy into the oscillations of the subkinks.

Fig. 17. The energy density of the kink solution in the deformed sine-Gordon system for

various values of e .
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Fig. 18. Excited subkinks oscillate within a kink of the deformed sine-Gordon equation.

Fig. 19. The collision between two kinks of the deformed sine- Gordon equation (v1 5
2 v2 5 0.3).

Once this numerical result is confirmed, one can conclude that the system

is not integrable.
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